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TECHNICAL PROGRESS REPORT 

A. STATEMENT OF PROBLEM 

The work here developed new materials and fabrication methodologies to control IR light 
propagation. 

1. We were to develop new syntheses for monodisperse polystyrene, silica, 
and PMMA colloids 

2. Develop synthetic methods to produce colloidal particles containing 
quantum dots of CdS, CdTe, etc 

3. Develop IR diffracting polymerized crystalline colloidal arrays (PCCA) 

4. Develop methods to fabricate PCCA which diffract light in defined 
wavelengths and bandwidths 

5. Fabricate PCCA which are thermally and chemically tunable in the 1 -10 
um spectral region 

6. Demonstrate thermal tuning and electronic control of PCCA diffraction 

7. Develop synthesis of highly charged, monodisperse titania dioxide 
colloids 

8. Fabricate and characterize photonic bandgap crystals 

B. SUMMARY OF IMPORTANT RESULTS 

1. We  developed  new methods to  synthesize highly charged,  monodisperse large 
polystyrene colloidal particles as reported in enclosed publication 1. 

2. We developed novel methods to synthesize monodisperse silica colloids in 
microemulsions as shown in the synthetic scheme of Fig. 1, and the TEM showing 
examples of these colloidal particles in Fig. 2. We also developed synthetic methods to 
form silica particles which contain Ag, or Au quantum dots as shown in Figs. 3 and 4. 
We functionalized these silica composite particles to make them highly charged, such 
they self assembled into CCA as shown in Figs. 5 and 6. In addition, we developed 
methods to form polystyrene colloids which contained Ag quantum dots which also self 
assembled into CCA (Fig. 7 and 8). 



We also developed methods using microemulsions to synthesize large silica particles 
containing CdS quantum dots (Fig. 9). 

3. We developed a number methods to produce PCCA which diffract in the IR. In one 
method we hydrolyzed the acrylamide PCCA to form carboxylates. At neutral pH the 
charged carboxylates caused the PCCA to swell due to formation of a Donnan potential. 
Fig. 10 shows the resultant diffraction shift of a PCCA into the IR as the time for 
hydrolysis increases. This hydrolysis also creates a PCCA, which operates as a pH and 
ionic strength sensor. Our publication 2 is a careful study of the physics of the pH and 
ionic strength swelling, and its utility for sensing pH and ionic strength. 

We also developed a chemically reversible disulfide cross linking approach (Fig. 11) 
and a hydrolysable crosslinking approach (Fig. 12 - 15) to swell PCCA into the IR. 

4. The methods discussed above allow us to sensitively control the wavelength of 
diffraction of the PCCA by carefully adjusting the pH or ionic strength or by decreasing 
the PCCA crosslinking. We developed methods to control the diffraction bandwidth by 
altering the scattering power of the colloidal particles by changing their size or refractive 
index. We also attempted to swell colloidal particles already polymerized into the PCCA. 
Preliminary attempts to swell polystyrene particles by adding styrene to the PCCA 
solution indicates success. Further work will be necessary to speed up this process in 
order to make it practical. 

5. We demonstrated that we could achieve thermal tuning by utilizing PCCA synthesized 
by using hydrogels of N-isopropyl acrylamide. 

We began working on electronic control of the PCCA diffraction by utilizing a PCCA 
which contains an 18-crown-6 crown ether group. This molecular recognition agent 
binds Pb2+, which causes the PCCA to swell and red shifts the diffraction. We attempted 
electronic control of the PCCA diffraction by utilizing the electrochemical oxidization of 
lead metal to Pb2+ which would then swell the PCCA into the IR. Preliminary data 
suggests that this method is viable for the control of PCCA diffraction wavelengths. 

6. The most challenging part of the research program involved synthesis of highly 
charged, monodisperse titania spheres. Although the literature reports synthesis of large, 
relatively monodisperse titania spheres, we found that none of these recipes were 
reproducible and did not yield monodisperse colloidal particles. We developed a number 
of new approaches for synthesizing titania spheres of relatively uniform size, but when 
we tried to add surface charge the titania colloids suffered, what we think, was a 
Coulomb explosion where the particles disintegrated into their small primary particles. 
Only just recently, with funding from other grant support, have we finally succeeded in 
fabricating monodisperse titania colloidal particles which self assemble into CCA that 
Bragg diffract light. Fig. 16 shows TEM micrographs of these particles. 



7. We reported earlier that colloidal arrays made from polystyrene colloids with a lattice 
spacing that diffracts -1200 nm light from the fee 111 planes diffracts essentially all light 
of all polarizations at wavelengths below 500 nm. Clearly the refractive index contrast, 
and the fact that it is an fee crystal will not allow this sample to be a 3-D photonic 
bandgap crystal. We have been carefully characterizing the crystal structure and 
diffraction properties and writing up these results for publication. We expect to submit 
this work by the end of December, 2000. 
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2. K. Lee and S. A. Asher, "Photonic Crystal Chemical Sensors: pH and Ionic Strength", 
Journal of American Chemical Society, 122, 9534-9537 (2000) 
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Figure 1. Synthesis of Highly Charged, Monodisperse Si02 

Particles 
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Figure 2. TEM Picture of Surface Modified Si02 

Particles 



Figure 3. TEM picture of Si02-Ag composite particles 
(Ag homogeneously distribution in Si02 spheres) 



Figure 4. TEM picture of Si02-Au composite 
spheres. The Au nanoparticles homogeneously 
distribute in the Si02 spheres. 



Secondary diffraction 
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Figure 5. Extinction spectra of Ag@SiC>2 composite sphere CCA at different 
colloidal concentrations. The Ag@Si02 sphere diameter is 98±8 nm. 
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Figure 6. Extinction spectra of Au@Si02 composite sphere 
CCA at different sphere concentrations. The sphere diameter 
is 110±10 nm, and the thickness of the CCA is 0.125 mm. 
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Figure 7. TEM picture of polystyrene-silver shell-core particles. 
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Figure 8. Back-scattering diffraction spectra of polystyrene-silver 
shell-core composite CCA at different particle concentrations. 
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Figure 9. TEM picture of Si02-CdS (surface) composite particles 



PCCA SWELLED INTO IR 
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Figure 10.   PS Colloid 270 nm diameter, 
Acrylamide PCCA Hydrolyzed for 0, 5,12, 23 
minutes. 



Increasing PCCA Spacing and 
Decreasing Elastic Constant 

Chemically Variable Crosslinking 

0 

NH2 

Acrylamide 

0 

,S-J 

H 

photoinitiator 

hv 

N, N'-Cystam inebisacrylam ide 

dithiothreitol 

1 hr a 37°C 

Hydrogel with cleaved crosslinks Crosslinked hydrogel 

Figure 11 



Fabrication of IR Diffracting Hydrogels 
Synthesis of PEG Crosslinked Hydrogels 
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Figure 12 



Fabrication of IR Diffracting Hydrogels 
Hydrolysis of Crosslinks 
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Figure 13 



Gel Volume Increase With Changing 
NaOH Concentration After 1 Hour Of 

rolvsis 
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Figure 14 



Diffraction Still Present After Swelling 
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Figure 15 
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Figure 16. TEM picture of monodisperse Ti02 spheres. 


